Extragalactic Sciences with the Far-Infrared Surveyor

Asantha Cooray

Outline

Quick summary of some key extragalactic astrophysics results from the Herschel Space Observatory

Science opportunities with Far-IR Surveyor (single aperture and an interferometer)

New things:

- (I) 3D spectral line intensity mapping
- (II) Far-infrared probes of reionization (especially molecular Hydrogen $10 < z < \sim 15$)

review of dusty star-forming galaxies Casey, Narayanan, Cooray 2014
Physics Reports

Of course: The remainder are the most interesting sources!

E.g. z > 3 galaxy populations

Resolving the extragalactic background spectrum

Asantha Cooray, UC Irvine Far-Infrared 2016 AAS

- (i) ULIRGS/HyLIRGS typically have about ~10¹⁰ solar masses in stars
- (ii) So the time scale for star-formation is [M*/(dM*/dt)] ~ 5 to 100 Million years (star-bursting galaxies!)

What kind of galaxies did we detect with Herschel?

Asantha Cooray, UC Irvine

and R. Lucas (STScI)

In the local Universe ~100% of starbursts are driven by gas-rich galaxy mergers.

But at $z \sim 1$ to 2, observations show that some starburst galaxies are simple disks.

Is there a different mechanism to trigger a starburst at high redshifts? (theorists: cold accretion mode)
Tacconi, L. J. et al. 2008, ApJ, 680, 246
Dekel, A. et al. 2009, ApJ, 703, 785

- (a) What fraction of starbursts are mergers vs. cold flows?
- (b) Do the mergers evolve differently from cold flows? what stops the starburst?

What are Dusty Star Forming Galaxies (DSFGs)?

LOCAL ULIRGS REVIEW: SANDERS, D. AND MIRABEL, I. 1996, ARAA, 34, 749

Spinoglio et al.

Far-IR rich in spectral lines

[slide adapted from Matt Malkan]

Far-IR rich in spectral lines

Asantha Cooray, UC Irvine

far-infrared 2016 AAS

<u>Lensing galaxy selection at sub-mm wavelengths > 95% efficient</u>

The Nature of Brightest high-z Herschel Galaxies

Asantha Cooray, UC Irvine far-infrared 2016 AAS

Keck LGS-AO Imaging

Fu et al. 2012; Bussmann et al. 2012; Fu et al. 2013; Calanog et al. 2014; Timmons et al. 2015

Asantha Cooray, UC Irvine far-infrared 2016 AAS

H-ATLAS: 650 sq. degrees. ~2 lensed Planck CSC sources. One in HerMES over 370 sq. degrees.

z=1.68, z determined from the Herschel-SPIRE/FTS spectrum with the 158 micron CII line George et al. 2014; Timmons et al. 2015

Nick Timmons UCI PhD 2017

Herschel Lensed Sources

H-ATLAS: 650 sq. degrees. ~2 lensed Planck CSC sources. One in HerMES over 370 sq. degrees.

z=1.68, z determined from the Herschel-SPIRE/FTS spectrum with the 158 micron CII line George et al. 2014; Timmons et al. 2015

Herschel Lensed Sources

NGP.NA.144

 10^{13}

HXMM01 ⊢

1014

G09v1.40

PACS spectroscopy of z > 1 galaxies

- mainly lensed galaxies
- about 50 targets
- **Mostly undetected**
- detections are at best 3 to 5 sigma

70 to 500 micron spectroscopy was not easy with Herschel - tons of upper limits over close to 500 hours unpublished.

Wardlow et al. in prep

10⁸

10⁻³

10-4

10⁻⁵

Unclassified

10⁹

LINER This Work

Star-Forming

10¹⁰

1011

L_{FIR} (L_⊙)

10¹²

500 um peaked sources $S_{250} < S_{350} < S_{500}$: z > 4?

*Confusion reduced S(500) - fS(250)

Dowell et al. 2014 ApJ technique

z = 6.34 Dusty Starburst Galaxy in HerMES

Riechers, D. et al. Nature 2013; Cooray et al. 2014

Asantha Cooray, UC Irvine Far-infrared 2016 AAS

Weakly lensed by two z=2.1 galaxies with magnification 1.6 +/- 0.3

[G2 identification in R13 as K-band ID of FLS3 incorrect]

 $L_{FIR} = 6X10^{12} L_{\odot}$ SFR ~ 1300 M_{\odots}/yr $T_{DUST} = 55 \pm 10 K$

MDUST > $10^9~M_\odot$ MSTARS ~ $5X10^{10}~M_\odot$ MGAS ~ $10^{11}~M_\odot$

No evidence for a quasar/massive AGN!

z = 6.34 Dusty Starburst Galaxy in HerMES

Riechers, D. et al. Nature 2013; Cooray et al. 2014

Asantha Cooray, UC Irvine

z > 6 galaxies can be discovered with just 100 to 600 micron coverage.

Need a survey area of around 1000 deg2 for statistically interesting number of targets.

[How angular resolution improvement with CALISTO increases or enhances identification of z > 5 galaxies with far-IR alone?]

"red" galaxies in Herschel

Galaxy proto-clusters at z >2 (before clusters "virialized" and bright in X-rays and SZ)

→ Herschel and Planck proto-cluster candidates @esa

Galaxy proto-clusters at z >2

Casey et al. 2015: Herschel/SCUBA-2 + redshifts from Keck/ MOSFIRE

z=2.47, 8 dusty, starbursting galaxies and 40+ Lyman-break galaxies + radio + AGNs

Far-IR Surveyor over 1000 deg2 will find many 100s of these things - no follow-up as automatic redshifts

Intensity Mapping

- 1. Individual sources are difficult to detect (sources are intrinsically faint, large instrument beam, etc),
- 2. We are interested in the total power from all sources, or
- 3. There is truly diffuse emission,

Science Applications:

- Galaxy Evolution
- Dark Matter and Galaxy Formation
- Epoch of Reionization
- Baryon Acoustic Oscillations.

CMB is the canonical example of IM (Planck Collaboration 2013).

Cosmic Infrared Background Fluctuations with SPIRE

Viero et al. 2012; Thacker et al. 2013

Asantha Cooray, UC Irvine

3-D Intensity Mapping

Sky map at z

Intensity map at z

- No need to resolve individual source
- Measure the collective emission from many sources
- Map large volume and faint sources at high z economically
- Astrophysical and cosmological applications from structure formation to measurement of SFRD of the universe at z > 2

intensity mapping signal-to-noise ratios in excess of 100 in redshift intervals of 0.3 around z of 2-3

For a concept Far-IR Surveyor between 60 to 650 microns:

[CII] at z = 0 and 3

[OI] at z = 1 and 7
extend to reionization

[OIII] ... etc

3D intensity mapping with Far-IR Surveyor

Molecular Hydrogen tracing primordial cooling sites/halos

Outstanding problems at z > 6: billion to ten billion solar mass black-holes in SDSS quasars, Universe at < 600 Myr.

One solution is massive PopIII clusters collapsing - seed blackholes. Need formation in minihalos at z > 15.

Molecular Hydrogen tracing primordial cooling sites/halos

Gong et al. 2012, ApJ arXiv:1212.2964

Molecular Hydrogen tracing primordial cooling sites/halos

Gong et al. 2012, ApJ arXiv:1212.2964

Interferometer should be able to resolve individual starbursting clumps out to z of 2.

Resolve narrow-line regions of local AGNs extended out to 500 pc in [OIV]/26 & [NeV]/24

Interferometer can also separate AGN from starburst components.

Sensitivity needed to lines at the level of 1e-19 W/m2.

Far-IR Interferometer Science Case

Asantha Cooray, UC Irvine

Wish list

single aperture: Wedding cake survey from deep 1-3 deg2, medium tier of 100-300 deg2, and shallow wide 1000-2000 deg2, 60-600 microns R~300-600, 12 arcsec spatial resolution at 250 um

interferometer: line sensitivity below 1e-19 W/m2, probe ~100 range of AGN and starburst galaxies

New interesting sciences:

- (a) Molecular Hydrogen pre-reionization at z ~15 (especially in a deep survey of lensing galaxy clusters for example).
- (b) OI at z > 6 to combine with mm-wave CII etc from ground and 21-cm experiments such as SKA low-frequency
- (c) 3D spectral line intensity fluctuations centered around z of 2-3

Summary